Periodic mechanical stress activates MEK1/2-ERK1/2 mitogenic signals in rat chondrocytes through Src and PLCγ1.
نویسندگان
چکیده
The mitogenic effects of periodic mechanical stress on chondrocytes have been studied extensively but the mechanisms whereby chondrocytes sense and respond to periodic mechanical stress remain a matter of debate. We explored the signal transduction pathways of chondrocyte proliferation and matrix synthesis under periodic mechanical stress. In particular, we sought to identify the role of the MEK1/2-ERK1/2 signaling pathway in chondrocyte proliferation and matrix synthesis following cyclic physiologic mechanical compression. Under periodic mechanical stress, both rat chondrocyte proliferation and matrix synthesis were significantly increased (P < 0.05) and were associated with increases in the phosphorylation of Src, PLCγ1, MEK1/2, and ERK1/2 (P < 0.05). Pretreatment with the MEK1/2-ERK1/2 selective inhibitor, PD98059, and shRNA targeted to ERK1/2 reduced periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis (P < 0.05), while the phosphorylation levels of Src-Tyr418 and PLCγ1-Tyr783 were not inhibited. Proliferation, matrix synthesis and phosphorylation of MEK1/2-Ser217/221 and ERK1/2-Thr202/Tyr204 were inhibited after pretreatment with the PLCγ1 inhibitor U73122 in chondrocytes in response to periodic mechanical stress (P < 0.05), while the phosphorylation site of Src-Tyr418 was not affected. Inhibition of Src activity with PP2 and shRNA targeted to Src abrogated chondrocyte proliferation and matrix synthesis (P < 0.05) and attenuated PLCγ1, MEK1/2 and ERK1/2 activation in chondrocytes subjected to periodic mechanical stress (P < 0.05). These findings suggest that periodic mechanical stress promotes chondrocyte proliferation and matrix synthesis in part through the Src-PLCγ1-MEK1/2-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade.
منابع مشابه
Periodic mechanical stress stimulates the FAK mitogenic signal in rat chondrocytes through ERK1/2 activity.
BACKGROUND/AIMS The biological effects of periodic mechanical stress on chondrocytes have been studied extensively over the past few years. However, the mechanisms underlying chondrocyte mechanosensing and signaling in response to periodic mechanical stress remain to be determined. In the current study, we examined the effects of focal adhesion kinase (FAK) signaling on periodic mechanical stre...
متن کاملPeriodic Mechanical Stress Activates PKCδ-Dependent EGFR Mitogenic Signals in Rat Chondrocytes via PI3K-Akt and ERK1/2.
BACKGROUND/AIMS The present study aimed to analyze the mechanisms by which periodic mechanical stress is translated into biochemical signals, and to verify the important role of signaling molecules including phosphatidylinositol-3-kinase (PI3K)-Akt, protein kinase C (PKC), and epidermal growth factor receptor (EGFR) in chondrocyte proliferation. The effects of periodic mechanical stress on the ...
متن کاملShear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways.
In this study, we defined the signaling cascade responsible for increased eNOS mRNA expression in response to laminar shear stress. This pathway depends on the tyrosine kinase c-Src because shear induction of eNOS mRNA is blocked by the c-Src inhibitors PP1 and PP2, as well as an adenovirus encoding kinase inactive c-Src. After activation of c-Src, this pathway diverges. One arm is responsible ...
متن کاملStatic Mechanical Stress Induces Apoptosis in Rat Endplate Chondrocytes through MAPK and Mitochondria-Dependent Caspase Activation Signaling Pathways
Mechanical stress has detrimental effects on cartilaginous endplate chondrocytes due to apoptosis in vivo and in vitro. In this study, we investigated the possible apoptosis signaling pathways induced by mechanical stress in cultured rat cervical endplate chondrocytes. Static mechanical load significantly reduced cell viability in a time- and load-dependent manner, as demonstrated by the Cell C...
متن کاملMechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes
INTRODUCTION The importance of mechanical signals in normal and inflamed cartilage is well established. Chondrocytes respond to changes in the levels of proinflammatory cytokines and mechanical signals during inflammation. Cytokines like interleukin (IL)-1beta suppress homeostatic mechanisms and inhibit cartilage repair and cell proliferation. However, matrix synthesis and chondrocyte (AC) prol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas
دوره 44 12 شماره
صفحات -
تاریخ انتشار 2011